Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 196(4): 501-511, 2020 10.
Article in English | MEDLINE | ID: mdl-32970470

ABSTRACT

AbstractAnticipatory changes in organismal responses, triggered by reliable environmental cues for future conditions, are key to species' persistence in temporally variable environments. Such responses were tested by measuring the physiological performance of a tropical high-shore oyster in tandem with the temporal predictability of environmental temperature. Heart rate of the oyster increased with environmental temperatures until body temperature reached ∼37°C, when a substantial depression occurred (∼60%) before recovery between ∼42° and 47°C, after which cardiac function collapsed. The sequential increase, depression, and recovery in cardiac performance aligned with temporal patterns in rock surface temperatures, where the risk of reaching temperatures close to the oysters' lethal limit accelerates if the rock heats up beyond ∼37°C, coinciding closely with the body temperature at which the oysters initiate metabolic depression. The increase in body temperature over a critical threshold serves as an early-warning cue to initiate anticipatory shifts in physiology and energy conservation before severe thermal stress occurs on the shore. Cross-correlating the onset of physiological mechanisms and temporal structures in environmental temperatures, therefore, reveals the potential role of reliable real-time environmental cues for future conditions in driving the evolution of anticipatory responses.


Subject(s)
Heart Rate , Hot Temperature , Ostreidae/metabolism , Animals , Heart/physiopathology , Ostreidae/physiology
2.
J Therm Biol ; 78: 270-276, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30509647

ABSTRACT

Organisms can mitigate the effects of long term variation in environmental conditions through acclimation, which involves changes in various physiological responses. To elucidate the possible effects of temperature and food concentrations on acclimation capacity, physiological responses of the mussel, Perna viridis, were measured after individuals were held for six weeks under varying temperatures and food availability. Warm-acclimated mussels experiencing higher food levels had significantly greater upper thermal limits than those maintained on lower food levels. In contrast, the upper thermal limits of cold-acclimated mussels were not affected by food levels. For warm-acclimated mussels, differences in upper thermal limits were likely due to rapid depletion of energy storage as predicted by Dynamic Energy Budget model simulations for P. viridis exposed to lower food levels. Clearance rates of cold-acclimated mussels were significantly lower than warm-acclimated mussels, regardless of food availability. The impacts of lower food acquisition on energy storage, however, could be compensated by lower metabolic rates of the cold-acclimated mussels. The availability and the ability to acquire food are not, therefore, the main drivers differentiating between the upper thermal tolerances of cold- and warm-acclimated mussels, but these differences are driven by the past thermal history the mussels experienced. The temperature tolerance range of P. viridis showed a positive shift to tolerate higher temperatures after acclimation. Such flexibility in thermal tolerance implies P. viridis has high capacity to acclimate to novel environments, which will enhance its future success given its commercial importance as an aquaculture species.


Subject(s)
Diet , Perna/physiology , Thermotolerance , Animals , Energy Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...